Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 422
Filtrar
1.
Stem Cell Res Ther ; 15(1): 64, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38438896

RESUMO

BACKGROUND: Premature ovarian failure (POF) has a profound impact on female reproductive and psychological health. In recent years, the transplantation of umbilical cord-derived mesenchymal stem cells (UC-MSCs) has demonstrated unprecedented potential in the treatment of POF. However, the heterogeneity of human UC-MSCs remains a challenge for their large-scale clinical application. Therefore, it is imperative to identify specific subpopulations within UC-MSCs that possess the capability to improve ovarian function, with the aim of reducing the uncertainty arising from the heterogeneity while achieving more effective treatment of POF. METHODS: 10 × Genomics was performed to investigate the heterogeneity of human UC-MSCs. We used LRP1 as a marker and distinguished the potential therapeutic subpopulation by flow cytometry, and determined its secretory functions. Unsorted UC-MSCs, LRP1high and LRP1low subpopulation was transplanted under the ovarian capsules of aged mice and CTX-induced POF mice, and therapeutic effects was evaluated by assessing hormone levels, estrous cycles, follicle counts, and embryo numbers. RNA sequencing on mouse oocytes and granulosa cells after transplantation was performed to explore the mechanism of LRP1high subpopulation on mouse oocytes and granulosa cells. RESULTS: We identified three distinct functional subtypes, including mesenchymal stem cells, multilymphoid progenitor cells and trophoblasts. Additionally, we identified the LRP1high subpopulation, which improved ovarian function in aged and POF mice. We elucidated the unique secretory functions of the LRP1high subpopulation, capable of secreting various chemokines, cytokines, and growth factors. Furthermore, LRP1 plays a crucial role in regulating the ovarian microenvironment, including tissue repair and extracellular matrix remodeling. Consistent with its functions, the transcriptomes of oocytes and granulosa cells after transplantation revealed that the LRP1high subpopulation improves ovarian function by modulating the extracellular matrix of oocytes, NAD metabolism, and mitochondrial function in granulosa cells. CONCLUSION: Through exploration of the heterogeneity of UC-MSCs, we identified the LRP1high subpopulation capable of improving ovarian function in aged and POF mice by secreting various factors and remodeling the extracellular matrix. This study provides new insights into the targeted exploration of human UC-MSCs in the precise treatment of POF.


Assuntos
Células-Tronco Mesenquimais , Insuficiência Ovariana Primária , Humanos , Feminino , Animais , Camundongos , Idoso , Insuficiência Ovariana Primária/terapia , Oócitos , Células-Tronco , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética
2.
Cells ; 12(23)2023 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-38067191

RESUMO

Explaining changes at the gene level that occur during neurodegeneration in the CA3 area is crucial from the point of view of memory impairment and the development of post-ischemic dementia. An ischemic model of Alzheimer's disease was used to evaluate changes in the expression of genes related to amyloid transport in the CA3 region of the hippocampus after 10 min of brain ischemia with survival of 2, 7 and 30 days and 12, 18 and 24 months. The quantitative reverse transcriptase PCR assay revealed that the expression of the LRP1 and RAGE genes involved in amyloid transport was dysregulated from 2 days to 24 months post-ischemia in the CA3 area of the hippocampus. LRP1 gene expression 2 and 7 days after ischemia was below control values. However, its expression from day 30 to 24 months, survival after an ischemic episode was above control values. RAGE gene expression 2 days after ischemia was below control values, reaching a maximum increase 7 and 30 days post-ischemia. Then, after 12, 18 and 24 months, it was again below the control values. The data indicate that in the CA3 area of the hippocampus, an episode of brain ischemia causes the increased expression of the RAGE gene for 7-30 days during the acute phase and that of LRP1 from 1 to 24 months after ischemia during the chronic stage. In other words, in the early post-ischemic stage, the expression of the gene that transport amyloid to the brain increases (7-30 days). Conversely, in the late post-ischemic stage, amyloid scavenging/cleaning gene activity increases, reducing and/or preventing further neuronal damage or facilitating the healing of damaged sites. This is how the new phenomenon of pyramidal neuronal damage in the CA3 area after ischemia is defined. In summary, post-ischemic modification of the LRP1 and RAGE genes is useful in the study of the ischemic pathways and molecular factors involved in the development of Alzheimer's disease.


Assuntos
Doença de Alzheimer , Isquemia Encefálica , Humanos , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Proteínas Amiloidogênicas/metabolismo , Isquemia Encefálica/genética , Isquemia Encefálica/metabolismo , Hipocampo/metabolismo , Isquemia/metabolismo , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Proteínas tau/metabolismo , Transporte Proteico
3.
Nat Commun ; 14(1): 8463, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38123547

RESUMO

Brain endothelial LDL receptor-related protein 1 (LRP1) is involved in the clearance of Aß peptides across the blood-brain barrier (BBB). Here we show that endothelial deficiency of ankyrin repeat and SAM domain containing 1 A (ANKS1A) reduces both the cell surface levels of LRP1 and the Aß clearance across the BBB. Association of ANKS1A with the NPXY motifs of LRP1 facilitates the transport of LRP1 from the endoplasmic reticulum toward the cell surface. ANKS1A deficiency in an Alzheimer's disease mouse model results in exacerbated Aß pathology followed by cognitive impairments. These deficits are reversible by gene therapy with brain endothelial-specific ANKS1A. In addition, human induced pluripotent stem cell-derived BBBs (iBBBs) were generated from endothelial cells lacking ANKS1A or carrying the rs6930932 variant. Those iBBBs exhibit both reduced cell surface LRP1 and impaired Aß clearance. Thus, our findings demonstrate that ANKS1A regulates LRP1-mediated Aß clearance across the BBB.


Assuntos
Células-Tronco Pluripotentes Induzidas , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Animais , Humanos , Camundongos , Peptídeos beta-Amiloides/metabolismo , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Células Endoteliais/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Receptores de LDL/genética , Receptores de LDL/metabolismo
4.
Congenit Anom (Kyoto) ; 63(6): 190-194, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37563890

RESUMO

A family of Pakistani origin, segregating polydactyly, and phalangeal synostosis in an autosomal dominant manner, has been investigated and presented in the present report. Whole-exome sequencing (WES), followed by segregation analysis using Sanger sequencing, revealed a heterozygous missense variant [c.G1696A, p.(Gly566Ser)] in the LRP4 gene located on human chromosome 11p11.2. Homology protein modeling revealed the mutant Ser566 generated new interactions with at least four other amino acids and disrupted protein folding and function. Our findings demonstrated the first direct evidence of involvement of LRP4 in causing polydactyly and phalangeal synostosis in the same family. This study highlighted the importance of inclusion of LRP4 gene in screening individuals presenting polydactyly in hands and feet, and phalangeal synostosis in the same family.


Assuntos
Polidactilia , Sinostose , Humanos , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Paquistão , Polidactilia/diagnóstico , Sinostose/diagnóstico , Sinostose/genética , Dedos , Linhagem , Proteínas Relacionadas a Receptor de LDL/genética
5.
Sci Adv ; 9(28): eadh2264, 2023 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-37450601

RESUMO

Rift Valley fever virus (RVFV) is an emerging arbovirus found in Africa. While RVFV is pantropic and infects many cells and tissues, viral replication and necrosis within the liver play a critical role in mediating severe disease. The low-density lipoprotein receptor-related protein 1 (Lrp1) is a recently identified host factor for cellular entry and infection by RVFV. The biological significance of Lrp1, including its role in hepatic disease in vivo, however, remains to be determined. Because Lrp1 has a high expression level in hepatocytes, we developed a mouse model in which Lrp1 is specifically deleted in hepatocytes to test how the absence of liver Lrp1 expression affects RVF pathogenesis. Mice lacking Lrp1 expression in hepatocytes showed minimal RVFV replication in the liver, longer time to death, and altered clinical signs toward neurological disease. In contrast, RVFV infection levels in other tissues showed no difference between the two genotypes. Therefore, Lrp1 is essential for RVF hepatic disease in mice.


Assuntos
Febre do Vale de Rift , Vírus da Febre do Vale do Rift , Animais , Camundongos , Febre do Vale de Rift/genética , Vírus da Febre do Vale do Rift/genética , África , Hepatócitos , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética
6.
Cells ; 12(10)2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-37408279

RESUMO

The brain undergoes oxidative stress and mitochondrial dysfunction following physiological insults such as Traumatic brain injury (TBI), ischemia-reperfusion, and stroke. Pharmacotherapeutics targeting mitochondria (mitoceuticals) against oxidative stress include antioxidants, mild uncouplers, and enhancers of mitochondrial biogenesis, which have been shown to improve pathophysiological outcomes after TBI. However, to date, there is no effective treatment for TBI. Studies have suggested that the deletion of LDL receptor-related protein 1 (LRP1) in adult neurons or glial cells could be beneficial and promote neuronal health. In this study, we used WT and LRP1 knockout (LKO) mouse embryonic fibroblast cells to examine mitochondrial outcomes following exogenous oxidative stress. Furthermore, we developed a novel technique to measure mitochondrial morphometric dynamics using transgenic mitochondrial reporter mice mtD2g (mitochondrial-specific Dendra2 green) in a TBI model. We found that oxidative stress increased the quantity of fragmented and spherical-shaped mitochondria in the injury core of the ipsilateral cortex following TBI, whereas rod-like elongated mitochondria were seen in the corresponding contralateral cortex. Critically, LRP1 deficiency significantly decreased mitochondrial fragmentation, preserving mitochondrial function and cell growth following exogenous oxidative stress. Collectively, our results show that targeting LRP1 to improve mitochondrial function is a potential pharmacotherapeutic strategy against oxidative damage in TBI and other neurodegenerative diseases.


Assuntos
Lesões Encefálicas Traumáticas , Fibroblastos , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Estresse Oxidativo , Animais , Camundongos , Encéfalo/metabolismo , Lesões Encefálicas Traumáticas/metabolismo , Fibroblastos/metabolismo , Camundongos Transgênicos , Mitocôndrias/metabolismo , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética
7.
HGG Adv ; 4(3): 100208, 2023 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-37305557

RESUMO

Cognitive functioning is heritable, with metabolic risk factors known to accelerate age-associated cognitive decline. Identifying genetic underpinnings of cognition is thus crucial. Here, we undertake single-variant and gene-based association analyses upon 6 neurocognitive phenotypes across 6 cognition domains in whole-exome sequencing data from 157,160 individuals of the UK Biobank cohort to expound the genetic architecture of human cognition. We report 20 independent loci associated with 5 cognitive domains while controlling for APOE isoform-carrier status and metabolic risk factors; 18 of which were not previously reported, and implicated genes relating to oxidative stress, synaptic plasticity and connectivity, and neuroinflammation. A subset of significant hits for cognition indicates mediating effects via metabolic traits. Some of these variants also exhibit pleiotropic effects on metabolic traits. We further identify previously unknown interactions of APOE variants with LRP1 (rs34949484 and others, suggestively significant), AMIGO1 (rs146766120; pAla25Thr, significant), and ITPR3 (rs111522866, significant), controlling for lipid and glycemic risks. Our gene-based analysis also suggests that APOC1 and LRP1 have plausible roles along shared pathways of amyloid beta (Aß) and lipid and/or glucose metabolism in affecting complex processing speed and visual attention. In addition, we report pairwise suggestive interactions of variants harbored in these genes with APOE affecting visual attention. Our report based on this large-scale exome-wide study highlights the effects of neuronal genes, such as LRP1, AMIGO1, and other genomic loci, thus providing further evidence of the genetic underpinnings for cognition during aging.


Assuntos
Disfunção Cognitiva , Exoma , Humanos , Exoma/genética , Peptídeos beta-Amiloides , Cognição , Apolipoproteínas E/genética , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética
8.
Am J Hum Genet ; 110(7): 1086-1097, 2023 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-37339631

RESUMO

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disorder characterized by the degeneration of motor neurons. Although repeat expansion in C9orf72 is its most common cause, the pathogenesis of ALS isn't fully clear. In this study, we show that repeat expansion in LRP12, a causative variant of oculopharyngodistal myopathy type 1 (OPDM1), is a cause of ALS. We identify CGG repeat expansion in LRP12 in five families and two simplex individuals. These ALS individuals (LRP12-ALS) have 61-100 repeats, which contrasts with most OPDM individuals with repeat expansion in LRP12 (LRP12-OPDM), who have 100-200 repeats. Phosphorylated TDP-43 is present in the cytoplasm of iPS cell-derived motor neurons (iPSMNs) in LRP12-ALS, a finding that reproduces the pathological hallmark of ALS. RNA foci are more prominent in muscle and iPSMNs in LRP12-ALS than in LRP12-OPDM. Muscleblind-like 1 aggregates are observed only in OPDM muscle. In conclusion, CGG repeat expansions in LRP12 cause ALS and OPDM, depending on the length of the repeat. Our findings provide insight into the repeat length-dependent switching of phenotypes.


Assuntos
Esclerose Amiotrófica Lateral , Distrofias Musculares , Doenças Neurodegenerativas , Humanos , Esclerose Amiotrófica Lateral/genética , Esclerose Amiotrófica Lateral/patologia , Neurônios Motores/patologia , Distrofias Musculares/genética , Doenças Neurodegenerativas/genética , Proteína C9orf72/genética , Expansão das Repetições de DNA , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética
9.
Biomol Biomed ; 23(6): 1026-1037, 2023 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-37310025

RESUMO

Apolipoprotein E (apoE) has previously been reported to play vital roles in tumor progression. However, the impact of apoE on colorectal cancer (CRC) metastasis remains largely unexplored. This study aimed to investigate the role of apoE in CRC metastasis and to identify the transcription factor and receptor of apoE involved in regulation of CRC metastasis. Bioinformatic analyses were conducted to examine the expression pattern and prognosis of apolipoproteins. APOE-overexpressing cell lines were utilized to explore the effects of apoE on proliferation, migration and invasion of CRC cells. Additionally, the transcription factor and receptor of apoE were screened via bioinformatics, and further validated through knockdown experiments. We discovered that the mRNA levels of APOC1, APOC2, APOD and APOE were higher in lymphatic invasion group, and a higher apoE level indicated poorer overall survival and progression-free interval. In vitro studies demonstrated that APOE-overexpression did not affect proliferation but promoted the migration and invasion of CRC cells. We also reported that APOE-expression was modulated by the transcription factor Jun by activating the proximal promoter region of APOE, and APOE-overexpression reversed the metastasis suppression of JUN knockdown. Furthermore, bioinformatics analysis suggested an interaction between apoE and low-density lipoprotein receptor-related protein 1 (LRP1). LRP1 was highly expressed in both the lymphatic invasion group and the APOEHigh group. Additionally, we found that APOE-overexpression upregulated LRP1 protein levels, and LRP1 knockdown attenuated the metastasis-promoting function of APOE. Overall, our study suggests that the Jun-APOE-LRP1 axis contributes to tumor metastasis in CRC.


Assuntos
Apolipoproteínas E , Neoplasias Colorretais , Humanos , Apolipoproteínas E/metabolismo , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Fatores de Transcrição/metabolismo , Movimento Celular/genética , Proteínas de Transporte , Neoplasias Colorretais/genética
10.
Front Immunol ; 14: 1113756, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37153545

RESUMO

Introduction: Bladder cancer (BLCA) is a highly heterogeneous disease influenced by the tumor microenvironment, which may affect patients' response to immune checkpoint blockade therapy. Therefore, identifying molecular markers and therapeutic targets to improve treatment is essential. In this study, we aimed to investigate the prognostic significance of LRP1 in BLCA. Methods: We analyzed TCGA and IMvigor210 cohorts to investigate the relationship of LRP1 with BLCA prognosis. We utilized gene mutation analysis and enrichment to identify LRP1-associated mutated genes and biological processes. Deconvolution algorithms and single-cell analysis were used to understand the tumor-infiltrated cells and biological pathways associated with LRP1 expression. Immunohistochemistry was conducted to validate the bioinformatics analysis. Results: Our study revealed that LRP1 was an independent risk factor for overall survival in BLCA patients and was associated with clinicopathological features and FGFR3 mutation frequency. Enrichment analysis demonstrated that LRP1 was involved in extracellular matrix remodeling and tumor metabolic processes. Furthermore, the ssGSEA algorithm revealed that LRP1 was positively correlated with the activities of tumor-associated pathways. Our study also found that high LRP1 expression impaired patients' responsiveness to ICB therapy in BLCA, which was predicted by TIDE prediction and validated by IMvigor210 cohort. Immunohistochemistry confirmed the expression of LRP1 in Cancer-Associated Fibroblasts (CAFs) and macrophages in the tumor microenvironment of BLCA. Discussion: Our study suggests that LRP1 may be a potential prognostic biomarker and therapeutic target in BLCA. Further research on LRP1 may improve BLCA precision medicine and enhance the efficacy of immune checkpoint blockade therapy.


Assuntos
Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Neoplasias da Bexiga Urinária , Humanos , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Prognóstico , Inibidores de Checkpoint Imunológico , Neoplasias da Bexiga Urinária/genética , Macrófagos , Microambiente Tumoral
11.
Genes (Basel) ; 14(4)2023 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-37107705

RESUMO

Due to the prevalence of congenital heart disease in the human population, determining the role of variants in congenital heart disease (CHD) can give a better understanding of the cause of the disorder. A homozygous missense mutation in the LDL receptor-related protein 1 (Lrp1) in mice was shown to cause congenital heart defects, including atrioventricular septal defect (AVSD) and double outlet right ventricle (DORV). Integrative analysis of publicly available single-cell RNA sequencing (scRNA-seq) datasets and spatial transcriptomics of human and mouse hearts indicated that LRP1 is predominantly expressed in mesenchymal cells and mainly located in the developing outflow tract and atrioventricular cushion. Gene burden analysis of 1922 CHD individuals versus 2602 controls with whole-exome sequencing showed a significant excess of rare damaging LRP1 mutations in CHD (odds ratio (OR) = 2.22, p = 1.92 × 10-4), especially in conotruncal defect with OR of 2.37 (p = 1.77 × 10-3) and atrioventricular septal defect with OR of 3.14 (p = 0.0194). Interestingly, there is a significant relationship between those variants that have an allele frequency below 0.01% and atrioventricular septal defect, which is the phenotype observed previously in a homozygous N-ethyl-N-nitrosourea (ENU)-induced Lrp1 mutant mouse line.


Assuntos
Cardiopatias Congênitas , Defeitos dos Septos Cardíacos , Humanos , Camundongos , Animais , Cardiopatias Congênitas/genética , Defeitos dos Septos Cardíacos/genética , Fenótipo , Mutação , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética
12.
Life Sci Alliance ; 6(7)2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37072184

RESUMO

Viruses with an RNA genome are often the cause of zoonotic infections. In order to identify novel pro-viral host cell factors, we screened a haploid insertion-mutagenized mouse embryonic cell library for clones that are resistant to Rift Valley fever virus (RVFV). This screen returned the low-density lipoprotein receptor-related protein 1 (LRP1) as a top hit, a plasma membrane protein involved in a wide variety of cell activities. Inactivation of LRP1 in human cells reduced RVFV RNA levels already at the attachment and entry stages of infection. Moreover, the role of LRP1 in promoting RVFV infection was dependent on physiological levels of cholesterol and on endocytosis. In the human cell line HuH-7, LRP1 also promoted early infection stages of sandfly fever Sicilian virus and La Crosse virus, but had a minor effect on late infection by vesicular stomatitis virus, whereas encephalomyocarditis virus was entirely LRP1-independent. Moreover, siRNA experiments in human Calu-3 cells demonstrated that also SARS-CoV-2 infection benefitted from LRP1. Thus, we identified LRP1 as a host factor that supports infection by a spectrum of RNA viruses.


Assuntos
COVID-19 , Vírus da Febre do Vale do Rift , Animais , Humanos , Camundongos , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , SARS-CoV-2/genética , Vírus da Febre do Vale do Rift/genética , Vírus da Febre do Vale do Rift/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Lipoproteínas LDL/metabolismo
13.
J Cell Biochem ; 124(5): 743-752, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36947703

RESUMO

Glucose-regulated protein-78 (Grp78) is an endoplasmic reticulum chaperone, which is secreted by cells and associates with cell surfaces, where it functions as a receptor for activated α2 -macroglobulin (α2 M) and tissue-type plasminogen activator (tPA). In macrophages, α2 M and tPA also bind to the transmembrane receptor, LDL receptor-related protein-1 (LRP1), activating a cell-signaling receptor assembly that includes the NMDA receptor (NMDA-R) to suppress innate immunity. Herein, we demonstrate that an antibody targeting Grp78 (N88) inhibits NFκB activation and expression of proinflammatory cytokines in bone marrow-derived macrophages (BMDMs) treated with the toll-like receptor-4 (TLR4) ligand, lipopolysaccharide, or with agonists that activate TLR2, TLR7, or TLR9. Pharmacologic inhibition of the NMDA-R or deletion of the gene encoding LRP1 (Lrp1) in BMDMs neutralizes the activity of N88. The fibrinolysis protease inhibitor, plasminogen activator inhibitor-1 (PAI1), has been implicated in diverse diseases including metabolic syndrome, cardiovascular disease, and type 2 diabetes. Deletion of Lrp1 independently increased expression of PAI1 and PAI2 in BMDMs, as did treatment of wild-type BMDMs with TLR agonists. tPA, α2 M, and N88 inhibited expression of PAI1 and PAI2 in BMDMs treated with TLR-activating agents. Inhibiting Src family kinases blocked the ability of both N88 and tPA to function as anti-inflammatory agents, suggesting that the cell-signaling pathway activated by tPA and N88, downstream of LRP1 and the NMDA-R, may be equivalent. We conclude that targeting cell-surface Grp78 may be effective in suppressing innate immunity by a mechanism that requires LRP1 and the NMDA-R.


Assuntos
Citocinas , Diabetes Mellitus Tipo 2 , Humanos , Citocinas/metabolismo , Proteínas de Membrana/metabolismo , Inativadores de Plasminogênio/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Chaperona BiP do Retículo Endoplasmático , N-Metilaspartato/metabolismo , Macrófagos/metabolismo , Anticorpos , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo
14.
Cell Commun Signal ; 21(1): 63, 2023 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-36973740

RESUMO

BACKGROUND: Fucosyltransferase 2(FUT2) and its induced α-1,2 fucosylation is associated with cancer metastasis. However, the role of FUT2 in colorectal cancer (CRC) metastasis remains unclear. METHODS: The expression levels and clinical analyses of FUT2 were assessed in CRC samples. Migration and invasion assays, EMT detection, nude mice peritoneal dissemination models and intestinal specific FUT2 knockout mice (FUT2△IEC mice) were used to investigate the effect of FUT2 on metastasis in colorectal cancer. Quantitative proteomics study of glycosylated protein, UEA enrichment, Co-immunoprecipitation identified the mediator of the invasive-inhibiting effects of FUT2. RESULTS: FUT2 is downregulated in CRC tissues and is positively correlated with the survival of CRC patients. FUT2 is an inhibitor of colorectal cancer metastasis which, when overexpressed, suppresses invasion and tumor dissemination in vitro and in vivo. FUT2 knock-out mice (FUT2△IEC mice) develop AMO and DSS-induced tumors and promote EMT in colorectal cancers. FUT2-induced α-1,2 fucosylation impacts the ability of low-density lipoprotein receptor-related protein 1(LRP1) to suppress colorectal cancer invasion. CONCLUSIONS: Our study demonstrated that FUT2 induces α-1,2 fucosylation and inhibits EMT and metastasis of colorectal cancer through LRP1 fucosylation, suggesting that FUT2 may serve as a therapeutic target for colorectal cancer. Video Abstract.


Assuntos
Neoplasias Colorretais , Transição Epitelial-Mesenquimal , Fucosiltransferases , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Animais , Camundongos , Linhagem Celular Tumoral , Movimento Celular , Neoplasias Colorretais/patologia , Regulação Neoplásica da Expressão Gênica , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Camundongos Nus , Metástase Neoplásica , Fucosiltransferases/genética
15.
J Cell Biol ; 222(4)2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36880731

RESUMO

Bone-resorbing osteoclasts mobilize proteolytic enzymes belonging to the matrix metalloproteinase (MMP) family to directly degrade type I collagen, the dominant extracellular matrix component of skeletal tissues. While searching for additional MMP substrates critical to bone resorption, Mmp9/Mmp14 double-knockout (DKO) osteoclasts-as well as MMP-inhibited human osteoclasts-unexpectedly display major changes in transcriptional programs in tandem with compromised RhoA activation, sealing zone formation and bone resorption. Further study revealed that osteoclast function is dependent on the ability of Mmp9 and Mmp14 to cooperatively proteolyze the ß-galactoside-binding lectin, galectin-3, on the cell surface. Mass spectrometry identified the galectin-3 receptor as low-density lipoprotein-related protein-1 (Lrp1), whose targeting in DKO osteoclasts fully rescues RhoA activation, sealing zone formation and bone resorption. Together, these findings identify a previously unrecognized galectin-3/Lrp1 axis whose proteolytic regulation controls both the transcriptional programs and the intracellular signaling cascades critical to mouse as well as human osteoclast function.


Assuntos
Reabsorção Óssea , Galectina 3 , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Osteoclastos , Animais , Humanos , Camundongos , Reabsorção Óssea/genética , Galectina 3/genética , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Metaloproteinase 14 da Matriz , Metaloproteinase 9 da Matriz
16.
FASEB J ; 37(2): e22783, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36705056

RESUMO

Capsular residual lens epithelial cells (CRLEC) undergo differentiation to fiber cells for lens regeneration or tansdifferentiation to myofibroblasts leading to posterior capsular opacification (PCO) after cataract surgery. The underlying regulatory mechanism remains unclear. Using human lens epithelial cell lines and the ex vivo cultured rat lens capsular bag model, we found that the lens epithelial cells secrete HSP90α extracellularly (eHSP90) through an autophagy-associated pathway. Administration of recombinant GST-HSP90α protein or its M-domain induces the elongation of rat CRLEC cells with concomitant upregulation of the crucial fiber cell transcriptional factor PROX1and its downstream targets, ß- and γ-crystallins and structure proteins. This regulation is abolished by PROX1 siRNA. GST-HSP90α upregulates PROX1 by binding to LRP1 and activating LRP1-AKT mediated YAP degradation. The upregulation of GST-HSP90α on PROX1 expression and CRLEC cell elongation is inhibited by LRP1 and AKT inhibitors, but activated by YAP-1 inhibitor (VP). These data demonstrated that the capsular residue epithelial cells upregulate and secrete eHSP90α, which in turn drive the differentiation of lens epithelial cell to fiber cells. The recombinant HSP90α protein is a potential novel differentiation regulator during lens regeneration.


Assuntos
Cristalino , Proteínas Proto-Oncogênicas c-akt , Ratos , Animais , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Diferenciação Celular , Cristalino/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Células Epiteliais/metabolismo , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética
17.
Arterioscler Thromb Vasc Biol ; 43(1): e29-e45, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36353989

RESUMO

BACKGROUND: The copper metabolism MURR1 domains/coiled-coil domain containing 22/coiled-coil domain containing 93 (CCC) complex is required for the transport of low-density lipoprotein receptor (LDLR) and LRP1 (LDLR-related protein 1) from endosomes to the cell surface of hepatocytes. Impaired functioning of hepatocytic CCC causes hypercholesterolemia in mice, dogs, and humans. Retriever, a protein complex consisting of subunits VPS26C, VPS35L, and VPS29, is associated with CCC, but its role in endosomal lipoprotein receptor transport is unclear. We here investigated the contribution of retriever to hepatocytic lipoprotein receptor recycling and plasma lipids regulation. METHODS: Using somatic CRISPR/Cas9 gene editing, we generated liver-specific VPS35L or VPS26C-deficient mice. We determined total and surface levels of LDLR and LRP1 and plasma lipids. In addition, we studied the protein levels and composition of CCC and retriever. RESULTS: Hepatocyte VPS35L deficiency reduced VPS26C levels but had minimal impact on CCC composition. VPS35L deletion decreased hepatocytic surface expression of LDLR and LRP1, accompanied by a 21% increase in plasma cholesterol levels. Hepatic VPS26C ablation affected neither levels of VPS35L and CCC subunits, nor plasma lipid concentrations. However, VPS26C deficiency increased hepatic LDLR protein levels by 2-fold, probably compensating for reduced LRP1 functioning, as we showed in VPS26C-deficient hepatoma cells. Upon PCSK9 (proprotein convertase subtilisin/kexin type 9)-mediated LDLR elimination, VPS26C ablation delayed postprandial triglyceride clearance and increased plasma triglyceride levels by 26%. CONCLUSIONS: Our study suggests that VPS35L is shared between retriever and CCC to facilitate LDLR and LRP1 transport from endosomes to the cell surface. Conversely, retriever subunit VPS26C selectively transports LRP1, but not LDLR, and thereby may control hepatic uptake of postprandial triglyceride-rich lipoprotein remnants.


Assuntos
Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Pró-Proteína Convertase 9 , Animais , Humanos , Camundongos , Hepatócitos/metabolismo , Lipoproteínas/metabolismo , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Camundongos Knockout , Pró-Proteína Convertase 9/genética , Pró-Proteína Convertase 9/metabolismo , Receptores de LDL , Triglicerídeos/metabolismo
18.
Gene ; 851: 146909, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36162527

RESUMO

BACKGROUND: Tetralogy of Fallot (TOF) is a rare, complex congenital heart defect caused by genetic and environmental interactions that results in abnormal heart development during the early stages of pregnancy. Genetic basis of TOF in Saudi populations is not yet studied. Therefore, the objective of this study is to screen for the molecular defects causing TOF in Saudi patients. METHODS: A family with non-syndromic TOF was recruited from the Western region of Saudi Arabia. Whole exome sequencing (WES) was performed on the proband and her parents. The identified candidate variant was verified by sanger sequencing. Also, different computational biology tools were used to figure out how candidate variants affect the structure and function of candidate protein involved in TOF. RESULTS: A novel heterozygous de novo mutation in LRP1 (p. G3311D) gene was identified in the index case. Also, this variant was absent in the in-house exome sequencing data of 80 healthy Saudi individuals. This variant was predicted to be likely pathogenic, as it negatively affects the biophysical chemical properties and stability of the protein. Furthermore, functional biology data from knock out mouse models confirms that molecular defects in LRP1 gene leads to cardiac defects and lethality. This variant was not previously reported in both Arab and global population genetic databases. CONCLUSION: The findings in this study postulate that the LRP1 variant has a role in TOF pathogenesis and facilitate accurate diagnosis as well as the understanding of underlying molecular mechanisms and pathophysiology of the disease.


Assuntos
Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Tetralogia de Fallot , Animais , Feminino , Camundongos , Exoma/genética , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Mutação , Linhagem , Arábia Saudita , Tetralogia de Fallot/genética , Tetralogia de Fallot/patologia , Humanos
19.
PLoS Pathog ; 18(12): e1010781, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36516199

RESUMO

PMT is a protein toxin produced by Pasteurella multocida serotypes A and D. As causative agent of atrophic rhinitis in swine, it leads to rapid degradation of the nasal turbinate bone. The toxin acts as a deamidase to modify a crucial glutamine in heterotrimeric G proteins, which results in constitutive activation of the G proteins and permanent stimulation of numerous downstream signaling pathways. Using a lentiviral based genome wide CRISPR knockout screen in combination with a lethal toxin chimera, consisting of full length inactive PMT and the catalytic domain of diphtheria toxin, we identified the LRP1 gene encoding the Low-Density Lipoprotein Receptor-related protein 1 as a critical host factor for PMT function. Loss of LRP1 reduced PMT binding and abolished the cellular response and deamidation of heterotrimeric G proteins, confirming LRP1 to be crucial for PMT uptake. Expression of LRP1 or cluster 4 of LRP1 restored intoxication of the knockout cells. In summary our data demonstrate LRP1 as crucial host entry factor for PMT intoxication by acting as its primary cell surface receptor.


Assuntos
Proteínas Heterotriméricas de Ligação ao GTP , Pasteurella multocida , Animais , Suínos , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Proteínas de Transporte/metabolismo , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Pasteurella multocida/genética , Pasteurella multocida/metabolismo , Proteínas Heterotriméricas de Ligação ao GTP/genética , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo
20.
Toxins (Basel) ; 14(11)2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36356021

RESUMO

Curcin and Curcin C, both of the ribosome-inactivating proteins of Jatropha curcas, have apparent inhibitory effects on the proliferation of osteosarcoma cell line U20S. However, the inhibitory effect of the latter is 13-fold higher than that of Curcin. The mechanism responsible for the difference has not been studied. This work aimed to understand and verify whether there are differences in entry efficiency and pathway between them using specific endocytosis inhibitors, gene silencing, and labeling techniques such as fluorescein isothiocyanate (FITC) labeling. The study found that the internalization efficiency of Curcin C was twice that of Curcin for U2OS cells. More than one entering pathway was adopted by both of them. Curcin C can enter U2OS cells through clathrin-dependent endocytosis and macropinocytosis, but clathrin-dependent endocytosis was not an option for Curcin. The low-density lipoprotein receptor-related protein 1 (LRP1) was found to mediate clathrin-dependent endocytosis of Curcin C. After LRP1 silencing, there was no significant difference in the 50% inhibitory concentration (IC50) and endocytosis efficiency between Curcin and Curcin C on U2OS cells. These results indicate that LRP1-mediated endocytosis is specific to Curcin C, thus leading to higher U2OS endocytosis efficiency and cytotoxicity than Curcin.


Assuntos
Alcaloides , Jatropha , Osteossarcoma , Toxinas Biológicas , Humanos , Proteínas Inativadoras de Ribossomos Tipo 1/farmacologia , Jatropha/genética , Jatropha/metabolismo , Proteínas Inativadoras de Ribossomos/metabolismo , Toxinas Biológicas/metabolismo , Alcaloides/metabolismo , Clatrina/metabolismo , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...